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ABSTRACT

It is shown that if one uses the uncoupled Hartree-Fock
method as a zero-order approximation for calculating atumic
and molecular second-order properties (either static or dynamic),
then the first order corrections to this approximation are
determined solely by quantities already available from the

zero-order calculations. No new equations need be solved.
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I. INTRODUCTION

First-order properties, such as permanent dipole aund quadrupole
moments, diamagnetic susceptibility, charge density at the nucleus, etc.,
are the straight expectation values of cperators W which are the sum of
one electron operators w(i). For a system with Hamiltonian H in a state
with energy E, such expectation values can be brought into the framework

of perturbation theory by introducing a perturbed Hamiltonianl’

I?7’=H+,(,(,w (1)

with normalized eigenfunctions ‘é; and with eigenvalues

& =k o+ v we@ (2)
Here E(l) = < W > , the expectation value of W. Second-order properties
such as electric polarizabilities, paramagnetic susceptibility, optical
rotatory constants, chemical shifts, and nuclear shielding constants
are proportional to E(z) = < Q> where Q can be regarded as the
symbolic operator Q = = (W =-<W>) (H -E )”l (W -<W>).

Since the exact eigenfunctions for many-electron atoms and molecules
are not known, the calculation of first- and second-order properties
startg with an approximate eigenfunction 95 which satisfies a SchrBdinger
equation Ho% = é%‘ . The Hamiitonian H «can be written in the
form H = Hg + Av where AV is the correction for the "badness"

of the approximate eigenfunction, The first and second-order properties

can then be expanded in powers of A,

[



<SW> = <Wzx o+ )\<w>i - . 3)
<Q> = <@gz + A<Qy o+ ... (4)

In this paper we wish tc discuss < W > and < Q 5  when ¥ 1is the
Hartree-Fock approximation to the wave function of a ground state atom or
molecule containing an even nuwber, N = 2n, of electrons. < W23 1is
then the familiar Hartree-Fock Approximation to < W > and, as will be
shown below, < Q= is £he uncoupléd Hartree-Fock approximationB’4
to < Q ~>.

As is well known,5 and as we will rederive below, <WZ3% = 0 for
this situation. It is our purpose to show that < Q = can be calculated

{

using only quantities already available from the calculation of < Q > .

Thus values of second-order properties can be made accurate through first-

order in A_ with out too much extra effort.

It is important to noté however that first-order in AV 1is not
the same és first-order in the error of the coupled Hartree-Fock
approximation3 to < Q >, Hence the statemert that < Q= + A< Q >/
is accurate through first-order, and the statement that coupled Hartree-
Fock is accurate through firstncrder3 have a somehow different content.
We plan to return to this point elsewhere. It is cur hope, of course,
that < Q3 + A< Q7 will have a accuracy comparable to that of

the coupled Hartree-Fock approximation, but yet be easier to evaluate.




II. REVIEW OF HARTREE~-FOCK THEORY

Vv is a single Slater determinant composed of ortho-normal spin-

O o]

.. o _ . . -
orbitals u 12 Uigy cees U Lf 52 is the antisymmeterizer,

b= w'w-----ww (5)

The spin-orbitals are determined by minimizing the expectation values of H,

E= <$/H/ P> ©
If the Hamiltonian is
N Z iy
H= g %(L) +"‘ff /’2/ > )
then
N ]
Ho= 2 [ A ror] +C
. {‘=/ b . (8)
where
St Y a9 = g o
w=2 $ @, Aap Ay
I 6*
- U 7 <+ g R
4le J‘é(ﬁ (Z) 4/ ?’I /
' (9

and P, commutes the coordinates of electron 1 into those of electron q
i .

The orbitals satisfy the characteristic equation




[h(l) + S(l)] u ’k, (Iy = e U k(l) (10)

The constant C may be written in the form
p N N
r@.0 0,0 vo,0, SO0 @
0=*5.Z 2 (g iays - ey /]w/ (11)
where we use the notation

& r & A N . r 8
(/(“;P/k £ ) :/f Ly 0o 1,(9 z;)—}/,L L{f(ué/(hlé(flg;)dt

2

The Hartree-Fock wave function than satisfies the SchrBdinger equation

Ho ¢= € ¢ where

(13)

The errors in.the Hartree-Fcck approximation correspond to

{1

oy
V= 2. ’20‘[ -2 JH ¢ (14)

A< J A=

However, since < %b/vl%/b = 0 , if one expands E in poweré of )\,
7y . , (2
E = CE+2X€  +AE T+ - - -- (15)
(/) .
G = 0 and the difference between £ and & is second-order in A

_An important property of the Hartree-Fock wave function is that it

. . , 6"
is stable with respect Lu one electrcon excitations (Brillouin's theorem, ).




That is, if a Slater determinant ZKA differs from the Hartree-Fock ;A

only in having the one spin-orbital uok repiaced by a sﬁin-orbital Vi

then
CUIHI Xp> =€ (P Zp> | (16)

For our purposes, it is convenient to restate the Brillouin theorem in

the form

APV Xg> = Y H-Hof Zge?
= ECP/ELS - € S IETY

=0 (17)

ITI. EVALUATION OF FIRST-ORDER CORRECTIONS

) *
We now consider the SchrBdinger equation ¢ HO + M W)ﬁﬁh— E EF
where Ho is the Hartree-Fock Hamiltonian given by Eq. (8). Since

Ho + M W is the sum of one electron operators, jé- can be expressed as

the Slater determinant

D= QA wlo -~~~ gl

(18)

where the spin=-orbitals ﬁk satisfy the characteristic equation

[h@ + 5@ +uwD] u (I = e u D (19)

The uk(l) and the e, can then be determined as solutions to a one

electron perturbation problem starting with uok (1) and eok as the

zeroth order eigenfunction and eigenvalue respectively. Expanding u, (L



in powers of/u, gives

(>
Uz () = é{ﬁo(’) * 4//(“’(/) 7‘/(«{2&{* ;/lf' -— = ~- (20)

In a similar fash-ion, é can be expanded in powers of/{,(,,

B =P oru Oy 21)
Here
(o./) &
;[’ Z Qa{/) ““M/‘/,()-‘-'L(N[/v) 22)
=/ . .
and
N
(oa) (25, ,
;Z’ ,‘:— d&(, (/)"‘-LQZU f—---d”//v)
N id tr) (¢
+ZZ ﬂu () --- (/(,(c) ;I/) - Uy (M)
L=l gE (23)

.1/ (e.2) -
The ;A §ﬁ , ... are terms in the double expansion of % 5

2

)

0, m
% 2 by /r/"mgé (26)

H=o M=6

If we alsoc expand é as a double power series and use double perturbation

1
theory , we can then identify:




(W5 = 7%/W/iE> (25)

and

oy = (RO >

(26)

the formula for '@ being exactly that of the uncoupled Hartree-

3

Fock approximation. Furthermore, as a result of the Dalgarno

52

Interchange Theorem.1 5

cwy = e B s ¢ IV 8D

(27)

and

0.2) (o /) e,
Q5 =< IIYSs + Y WY /v BN s

Let us now expand (f / V/§> in powers of _{4C in the

form

<25/V/_¢) = U4, F A .o (29)

Then, since V is independent of /é{ ; it follows from

Eqs. (21), (27) and Y28) that (W}/ = A and Q@5 = A, .



Making use of Eqs. (9), (11), and (14), together with the notation

of Eq. (12), we then find

N
(PIV]p> =;;LZ,:7 27 (/6///t01) -—A//; L)
A=/ ?"=/
) (36 )

+ (A‘z(‘ o//\ég"q) *@‘;1"’/5"’4‘0)

Expanding the u, in powers of AL s and collecting terms,
gives ,4/ =<V\/>/ =0 - Furthermore,

a4 ud ' 10 P
Ae = 05 = F 5 20 [AY 1455 g U vrany iy

<=/ /},/
“b o .0, A ) A
# //LJ°/,£;{’)~(ZO7 /J/’L )'-2(4;{774 3] (31)

The interesting and important feature of these formulae is that they

(20 (o) 72
do not involve the f’l . All one needs are & £ and 24

which are already available from the calculation of (@}, . This
simplification has come about in the following way:
(0. 1)
Since Zé is the sum of cne electron excitation Slater

determinants, it follows from the Brillouin Theorem, Eq. (17),

(o)
that (% /l//w>=‘—0 and hence <V\/>/-‘-‘-0.
0.2)
In a similar manner, since 25 only invelves G/
(a2
through one electron excitation Slater determinants, < w /V/ ;Z))

is independent of the second-order spin-orbitals. Thus, Eq. (31)

provides us with a very simple expression for <@ which only
' /




requires the knowledge of the unperturbed and first-order spin-
orbitals.
Similar results can be shown to hold in the calculation of
‘ 7
second-order frequency dependent properties. In the notation of
(o)
reference 1, Chapter 9, one can prove that if ;b is the
Har tree-Fock function then (i) one electron excitation terms
in éa+ do not contribute te L , and (ii), the two electron
excitation terms in 67«. + ¢_ , which i{s5 the guantity one
needs to compute L , are all expressible in terms of the spin-
(c)
orbitals of ;ét which are available from the zero order
calculation.

Details and results of calculations for specific examples

will be published as soon as possible..
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